Monday, April 09, 2007

http://www.glenbrook.k12.il.us/GBSSCI/PHYS/CLASS/sound/soundtoc.html

The Nature of a Sound Wave

Sound is a Longitudinal Wave

In the first part of Lesson 1, it was mentioned that sound is a mechanical wave which is created by a vibrating object. The vibrations of the object set particles in the surrounding medium in vibrational motion, thus transporting energy through the medium. The vibrations of the particles are best described as longitudinal. Longitudinal waves are waves in which the motion of the individual particles of the medium is in a direction which is parallel to the direction of energy transport. A longitudinal wave can be created in a slinky if the slinky is stretched out in a horizontal direction and the first coils of the slinky are vibrated horizontally. In such a case, each individual coil of the medium is set into vibrational motion in directions parallel to the direction which the energy is transported.

See an Animation

Sound waves are longitudinal waves because particles of the medium through which the sound is transported vibrate parallel to the direction which the sound moves. A vibrating string can create longitudinal waves as depicted in the animation below. As the vibrating string moves in the forward direction, it begins to push upon surrounding air molecules, moving them to the right towards their nearest neighbor. This causes the air molecules to the right of the string to be compressed into a small region of space. As the vibrating string moves in the reverse direction (leftward), it lowers the pressure of the air immediately to its right, thus causing air molecules to move back leftward. The lower pressure to the right of the string causes air molecules in that region immediately to the right of the string to expand into a large region of space. The back and forth vibration of the string causes individual air molecules (or a layer of air molecules) in the region immediately to the right of the string to continually move back and forth horizontally; the molecules move rightward as the string moves rightward and then leftward as the string moves leftward. These back and forth vibrations are imparted to adjacent neighbors by particle interaction; thus, other surrounding particles begin to move rightward and leftward, thus sending a wave to the right. Since air molecules (the particles of the medium) are moving in a direction which is parallel to the direction which the wave moves, the sound wave is referred to as a longitudinal wave. The result of such longitudinal vibrations is the creation of compressions and rarefactions within the air.

Regardless of the source of the sound wave - whether it be a vibrating string or the vibrating tines of a tuning fork - sound is a longitudinal wave. And the essential characteristic of a longitudinal wave which distinguishes it from other types of waves is that the particles of the medium move in a direction parallel to the direction of energy transport.

No comments: