Monday, April 09, 2007

axis mundi pix

Then only will

"Then only will you see it, when you cannot speak of it; for the knowledge of it is deep silence and suppression of all the senses."—Hermes Trimegistus (Lib. x.6)

identity

In philosophy, identity is whatever makes an entity definable and recognizable, in terms of possessing a set of qualities or characteristics that distinguish it from entities of a different type. Or, in layman's terms, identity is whatever makes something the same or different.

Contents

[hide]

[edit] Logic of identity

In logic, the identity relation is normally defined as the relation that holds only between a thing and itself. That is, identity is the two-place predicate, "=", such that for all x and y, "x = y" is true iff x is the same thing as y. Identity is transitive, symmetric, and reflexive. It is an axiom of most normal modal logics that for all x, if x = x then necessarily x = x. (These definitions are of course inapplicable in some areas of quantified logic, such as fuzzy logic and fuzzy set theory, and with respect to vague objects.)

[edit] Metaphysics of identity

Metaphysicians, and sometimes philosophers of language and mind, ask other questions:

  • What does it mean for an object to be the same as itself?
  • If x and y are identical (are the same thing), must they always be identical? Are they necessarily identical?
  • What does it mean for an object to be the same, if it changes over time? (Is applet the same as applet+1?)
  • If an object's parts are entirely replaced over time, as in the Ship of Theseus example, in what way is it the same?

A traditional view is that of Gottfried Leibniz, who held that x is the same as y if and only if every predicate true of x is true of y as well.

Leibniz's ideas have taken root in the philosophy of mathematics, where they have influenced the development of the predicate calculus as Leibniz's law. Mathematicians sometimes distinguish identity from equality. More mundanely, an identity in mathematics may be an equation that holds true for all values of a variable. Hegel argued that things are inherently self-contradictory and that the notion of something being self-identical only made sense if it were not also not-identical or different from itself and did not also imply the latter. In Hegel's words, "Identity is the identity of identity and non-identity." More recent metaphysicians have discussed trans-world identity -- the notion that there can be the same object in different possible worlds.

[edit] Qualitative versus numerical identity

Arbitrary objects a and b can be said to be qualitatively identical if a and b are duplicates, that is, if a and b are exactly similar in all respects, that is, if a and b have all qualitative properties in common. Examples of this might be two wine glasses made in the same wine glass factory on the same production line (at least, for a relaxed standard of exact similarity), or a carbon atom in one's left hand and a carbon atom in one's right shoulder (perhaps true even for the most strict standard of exact similarity).

Alternatively, a and b can be said to be numerically identical if a and b are one and the same thing, that is, if a is b, that is, if there is only one thing variously called "a" and "b". For example, Clark Kent is numerically identical with Superman in the sense that there is only one person (who happens to wear different clothes at different times). This relationship is expressed in mathematics with the "=" symbol, e.g., a = b, or Clark Kent = Superman.

[edit] See also

[edit] External links

Identity

Identity

From Wikipedia, the free encyclopedia

Jump to: navigation, search
Look up Identity in
Wiktionary, the free dictionary.

Identity may refer to:

Contents

[hide]

[edit] Philosophy

[edit] Mathematics

[edit] Social science and psychology

  • Identity (social science). In the social sciences, identity has specific meanings, stemming from cognitive theory, sociology, politics, and psychology.
  • Cultural identity is a person's self-affiliation (or categorization by others) as a member of a cultural group.
  • Gender identity is the gender with which a person identifies (or is identified by others).
  • Digital identity is the representation of identity in terms of digital information.
  • Online identity is the digital identity established by computer network users.
  • Psychological identity is the concept that an individual has a unique identity developed relatively late in history.

[edit] Business

  • An accounting identity is a basic accounting formulation that must, by construction, hold; for example, the balance sheet of a company must balance. The term may also be used to apply to formulations in economics that have the same characteristics, for example, the balance of payments must balance.
  • Corporate identity is the physical manifestation of a business brand.
  • Identity theft is the deliberate appropriation of someone else's identity (without that person's permission) for criminal purposes.

[edit] Computer science

  • Identity (object-oriented programming), a property of objects that allows those objects to be distinguished from each other.
  • Identity column in SQL Server represents a database field whose values are automatically generated by the server, and uniquely identify a row in the table.

[edit] Religion

  • Christian Identity, a controversial religious belief which holds that Europeans and their descendents are the Biblical Israel

[edit] Television, film, music and literature

Light Behaves as a Wave?

Lesson 1: How Do We Know Light Behaves as a Wave?

Wavelike Behaviors of Light

An age-old debate which has persisted among scientists is related to the question, "Is light a wave or a stream of particles?" Very noteworthy and distinguished physicists have taken up each side of the argument, providing a wealth of evidence for each side. The fact is that light exhibits behaviors which are characteristic of both waves and particles. In this unit of The Physics Classroom, the focus will be on the wavelike nature of light.

Light exhibits certain behaviors which are characteristic of any wave and would be difficult to explain with a pure particle-view. Light reflects in the same manner that any wave would reflect. Light refracts in the same manner that any wave would refract. Light reflects in the same manner that any wave would reflect. Light refracts in the same manner that any wave would refract. Light diffracts in the same manner that any wave would diffract. Light undergoes interference in the same manner that any wave would interfere. And light exhibits the Doppler effect just as any wave would exhibit the Doppler effect. Light behaves in a way that is consistent with our conceptual and mathematical understanding of waves. Since light behaves like a wave, one would have good reason to believe that it might be a wave. In Lesson 1, we will investigate the variety of behaviors, properties and characteristics of light which seem to support the wave model of light. On this page, we will focus on three specific behaviors - reflection, refraction and diffraction.

A wave doesn't just stop when it reaches the end of the medium. Rather, a wave will undergo certain behaviors when it encounters the end of the medium. Specifically, there will be some reflection off the boundary and some transmission into the new medium. The transmitted wave undergoes refraction (or bending) if it approaches the boundary at an angle. If the boundary is merely an obstacle implanted within the medium, and if the dimensions of the obstacle are smaller than the wavelength of the wave, then there will be very noticeable diffraction of the wave around the object. Each one of these behaviors - reflection, refraction and diffraction - is characterized by specific conceptual principles and mathematical equations. The reflection, refraction, and diffraction of waves was first introduced in Unit 10 of The Physics Classroom. In Unit 11 of The Physics Classroom, the reflection, refraction, and diffraction of sound waves was discussed. Now we will see how light waves demonstrate their wave nature by reflection, refraction and diffraction.

All waves are known to undergo reflection or the bouncing off of an obstacle. Most people are very accustomed to the fact that light waves also undergo reflection. The reflection of light waves off of a mirrored surface results in the formation of an image. One characteristic of wave reflection is that the angle at which the wave approaches a flat reflecting surface is equal to the angle at which the wave leaves the surface. This characteristic is observed for water waves and sound waves. It is also observed for light waves. Light, like any wave, follows the law of reflection when bouncing off flat surfaces. The reflection of light waves will be discussed in more detail in Unit 13 of The Physics Classroom. For now, it is enough to say that the reflective behavior of light provides evidence for the wavelike nature of light.

All waves are known to undergo refraction when they pass from one medium to another medium. That is, when a wavefront crosses the boundary between two media, the direction that the wavefront is moving undergoes a sudden change; the path is "bent." This behavior of wave refraction can be described by both conceptual and mathematical principles. First, the direction of "bending" is dependent upon the relative speed of the two media. A wave will bend one way when it passes from a medium in which it travels slow into a medium in which it travels fast; and if moving from a fast medium to a slow medium, the wavefront will bend in the opposite direction. Second, the amount of bending is dependent upon the actual speeds of the two media on each side of the boundary. The amount of bending is a measurable behavior which follows distinct mathematical equations. These equations are based upon the speeds of the wave in the two media and the angles at which the wave approaches and departs from the boundary. Light, like any wave, is known to refract as it passes from one medium into another medium. In fact, a study of the refraction of light reveals that its refractive behavior follows the same conceptual and mathematical rules which govern the refractive behavior of other waves such as water waves and sound waves. The refraction of light waves will be discussed in more detail in Unit 14 of The Physics Classroom. For now, it is enough to say that the refractive behavior of light provides evidence for the wavelike nature of light.

Reflection involves a change in direction of waves when they bounce off a barrier; refraction of waves involves a change in the direction of waves as they pass from one medium to another; and diffraction involves a change in direction of waves as they pass through an opening or around an obstacle in their path. Water waves have the ability to travel around corners, around obstacles and through openings. Sound waves do the same. But what about light? Do light waves bend around obstacles and through openings? If they do, then it would provide still more evidence to support the belief that light is a wave.

When light encounters an obstacle in its path, the obstacle blocks the light and tends to cause the formation of a shadow in the region behind the obstacle. Light does not exhibit a very noticeable ability to bend around the obstacle and fill in the region behind it with light. Nonetheless, light does diffract around obstacles. In fact, if you observe a shadow carefully, you will notice that its edges are extremely fuzzy. Interference effects occur due to the diffraction of light around different sides of the object, causing the shadow of the object to be fuzzy. This was demonstrated in class with a laser light and penny demonstration. Light diffracting around the right edge of a penny can constructively and destructively interfere with light diffracting around the left edge of the penny. The result is that an interference pattern is created; the pattern consists of alternating rings of light and darkness. Such a pattern is only noticeable if a narrow beam of monochromatic light (i.e., single wavelength light) is passed directed at the penny. The photograph at the right shows an interference pattern created in this manner. Since, light waves are diffracting around the edges of the penny, the waves are broken up into different wavefronts which converge at a point on a screen to produce the interference pattern shown in the photograph. Can you explain this phenomenon with a strictly particle-view of light? This amazing penny diffraction demonstration provides another reason why believing that light has a wavelike nature makes cents (I mean "sense"). These interference effects will be discussed in more detail later in this lesson.

Light behaves as a wave - it undergoes reflection, refraction, and diffraction just like any wave would. Yet there is still more reason to believe in the wavelike nature of light. Continue with Lesson 1 to learn about more behaviors which could never be explained by a strictly particle-view of light.

Light is a Wave?

Lesson 1: How Do We Know Light is a Wave?

  1. Wave-like Behaviors of Light
  2. Two Point Source Interference
  3. Thin Film Interference
  4. Polarization

Lesson 2: Color and Vision

  1. The Electromagnetic and Visible Spectra
  2. Visible Light and the Eye's Response
  3. Light Absorbtion, Reflection, and Transmission
  4. Color Addition
  5. Color Subtraction
  6. Blue Skies and Red Sunsets

Colour (physics)

Colour (physics)

colour - Click to enlarge spectrum - Click to enlarge
Click images to enlarge
In physics, quality or wavelength of light emitted or reflected from an object. Visible white light consists of electromagnetic radiation of various wavelengths, and if a beam is refracted through a prism, it can be spread out into the visible spectrum (that can be detected by the human eye), in which the various colours correspond to different wavelengths. From long to short wavelengths (from about 700 to 400 nanometres) the colours are red, orange, yellow, green, blue, indigo, and violet.

The colour of grass is green because grass absorbs all the colours from the spectrum and only transmits or reflects the wavelength corresponding to green. A sheet of white paper reflects all the colours of the spectrum from its surface; black objects absorb all the colours of the spectrum.

All colours can be obtained from mixing proportions of red, green, and blue light. These are known as primary colours. Different colour filters can also produce light of different colours. For example, a red filter only transmits red light, the remaining colours of the spectrum being absorbed by the filter.

Mixing red, green, and blue light in the correct proportions produces white light. When these colours are mixed in different proportions, secondary colours are formed, such as cyan, magenta, and yellow. For example, blue + red = magenta, red + green = yellow, and green + blue = cyan. Yellow light is reflected from the surfaces of some flowers as the petals absorb blue light. Red and green light are reflected back, and these mix to give the sensation of yellow.

© Research Machines plc 2007. All rights reserved. Helicon Publishing is a division of Research Machines plc.

Sound is a Pressure Wave

Sound is a Pressure Wave

Sound is a mechanical wave which results from the longitudinal motion of the particles of the medium through which the sound wave is moving. If a sound wave is moving from left to right through air, then particles of air will be displaced both rightward and leftward as the energy of the sound wave passes through it. The motion of the particles parallel (and anti-parallel) to the direction of the energy transport is what characterizes sound as a longitudinal wave.

A vibrating tuning fork is capable of creating such a longitudinal wave. As the tines of the fork vibrate back and forth, they push on neighboring air particles. The forward motion of a tine pushes air molecules horizontally to the right and the backward retraction of the tine creates a low pressure area allowing the air particles to move back to the left. Because of the longitudinal motion of the air particles, there are regions in the air where the air particles are compressed together and other regions where the air particles are spread apart. These regions are known as compressions and rarefactions respectively. The compressions are regions of high air pressure while the rarefactions are regions of low air pressure. The diagram below depicts a sound wave created by a tuning fork and propagated through the air in an open tube. The compressions and rarefactions are labeled.

The wavelength of a wave is merely the distance which a disturbance travels along the medium in one complete wave cycle. Since a wave repeats its pattern once every wave cycle, the wavelength is sometimes referred to as the length of the repeating pattern - the length of one complete wave. For a transverse wave, this length is commonly measured from one wave crest to the next adjacent wave crest, or from one wave trough to the next adjacent wave trough. Since a longitudinal wave does not contain crests and troughs, its wavelength must be measured differently. A longitudinal wave consists of a repeating pattern of compressions and rarefactions. Thus, the wavelength is commonly measured as the distance from one compression to the next adjacent compression or the distance from one rarefaction to the next adjacent rarefaction.

Since a sound wave consists of a repeating pattern of high pressure and low pressure regions moving through a medium, it is sometimes referred to as a pressure wave. If a detector, whether it be the human ear or a man-made instrument, is used to detect a sound wave, it would detect fluctuations in pressure as the sound wave impinges upon the detecting device. At one instant in time, the detector would detect a high pressure; this would correspond to the arrival of a compression at the detector site. At the next instant in time, the detector might detect normal pressure. And then finally a low pressure would be detected, corresponding to the arrival of a rarefaction at the detector site. Since the fluctuations in pressure as detected by the detector occur at periodic and regular time intervals, a plot of pressure vs. time would appear as a sine curve. The crests of the sine curve correspond to compressions; the troughs correspond to rarefactions; and the "zero point" corresponds to the pressure which the air would have if there were no disturbance moving through it. The diagram below depicts the correspondence between the longitudinal nature of a sound wave and the pressure-time fluctuations which it creates.

The above diagram can be somewhat misleading if you are not careful. The representation of sound by a sine wave is merely an attempt to illustrate the sinusoidal nature of the pressure-time fluctuations. Do not conclude that sound is a transverse wave which has crests and troughs. Sound is indeed a longitudinal wave with compressions and rarefactions. As sound passes through a medium, the particles of that medium do not vibrate in a transverse manner. Do not be misled - sound is a longitudinal wave.

http://www.glenbrook.k12.il.us/GBSSCI/PHYS/CLASS/sound/soundtoc.html

The Nature of a Sound Wave

Sound is a Longitudinal Wave

In the first part of Lesson 1, it was mentioned that sound is a mechanical wave which is created by a vibrating object. The vibrations of the object set particles in the surrounding medium in vibrational motion, thus transporting energy through the medium. The vibrations of the particles are best described as longitudinal. Longitudinal waves are waves in which the motion of the individual particles of the medium is in a direction which is parallel to the direction of energy transport. A longitudinal wave can be created in a slinky if the slinky is stretched out in a horizontal direction and the first coils of the slinky are vibrated horizontally. In such a case, each individual coil of the medium is set into vibrational motion in directions parallel to the direction which the energy is transported.

See an Animation

Sound waves are longitudinal waves because particles of the medium through which the sound is transported vibrate parallel to the direction which the sound moves. A vibrating string can create longitudinal waves as depicted in the animation below. As the vibrating string moves in the forward direction, it begins to push upon surrounding air molecules, moving them to the right towards their nearest neighbor. This causes the air molecules to the right of the string to be compressed into a small region of space. As the vibrating string moves in the reverse direction (leftward), it lowers the pressure of the air immediately to its right, thus causing air molecules to move back leftward. The lower pressure to the right of the string causes air molecules in that region immediately to the right of the string to expand into a large region of space. The back and forth vibration of the string causes individual air molecules (or a layer of air molecules) in the region immediately to the right of the string to continually move back and forth horizontally; the molecules move rightward as the string moves rightward and then leftward as the string moves leftward. These back and forth vibrations are imparted to adjacent neighbors by particle interaction; thus, other surrounding particles begin to move rightward and leftward, thus sending a wave to the right. Since air molecules (the particles of the medium) are moving in a direction which is parallel to the direction which the wave moves, the sound wave is referred to as a longitudinal wave. The result of such longitudinal vibrations is the creation of compressions and rarefactions within the air.

Regardless of the source of the sound wave - whether it be a vibrating string or the vibrating tines of a tuning fork - sound is a longitudinal wave. And the essential characteristic of a longitudinal wave which distinguishes it from other types of waves is that the particles of the medium move in a direction parallel to the direction of energy transport.

The Nature of a Sound Wave

Lesson 1: The Nature of a Sound Wave

Sound is a Mechanical Wave

Sound and music are parts of our everyday sensory experience. Just as humans have eyes for the detection of light and color, so we are equipped with ears for the detection of sound. We seldom take the time to ponder the characteristics and behaviors of sound and the mechanisms by which sounds are produced, propagated, and detected. The basis for an understanding of sound, music and hearing is the physics of waves. Sound is a wave which is created by vibrating objects and propagated through a medium from one location to another. In this unit, we will investigate the nature, properties and behaviors of sound waves and apply basic wave principles towards an understanding of music.

As discussed in the previous unit of The Physics Classroom, a wave can be described as a disturbance that travels through a medium, transporting energy from one location to another location. The medium is simply the material through which the disturbance is moving; it can be thought of as a series of interacting particles. The example of a slinky wave is often used to illustrate the nature of a wave. A disturbance is typically created within the slinky by the back and forth movement of the first coil of the slinky. The first coil becomes disturbed and begins to push or pull on the second coil; this push or pull on the second coil will displace the second coil from its equilibrium position. As the second coil becomes displaced, it begins to push or pull on the third coil; the push or pull on the third coil displaces it from its equilibrium position. As the third coil becomes displaced, it begins to push or pull on the fourth coil. This process continues in consecutive fashion, each individual particle acting to displace the adjacent particle; subsequently the disturbance travels through the slinky. As the disturbance moves from coil to coil, the energy which was originally introduced into the first coil is transported along the medium from one location to another.

See an Animation

A sound wave is similar in nature to a slinky wave for a variety of reasons. First, there is a medium which carries the disturbance from one location to another. Typically, this medium is air; though it could be any material such as water or steel. The medium is simply a series of interconnected and interacting particles. Second, there is an original source of the wave, some vibrating object capable of disturbing the first particle of the medium. The vibrating object which creates the disturbance could be the vocal chords of a person, the vibrating string and sound board of a guitar or violin, the vibrating tines of a tuning fork, or the vibrating diaphragm of a radio speaker. Third, the sound wave is transported from one location to another by means of the particle interaction. If the sound wave is moving through air, then as one air particle is displaced from its equilibrium position, it exerts a push or pull on its nearest neighbors, causing them to be displaced from their equilibrium position. This particle interaction continues throughout the entire medium, with each particle interacting and causing a disturbance of its nearest neighbors. Since a sound wave is a disturbance which is transported through a medium via the mechanism of particle interaction, a sound wave is characterized as a mechanical wave.

The creation and propagation of sound waves are often demonstrated in class through the use of a tuning fork. A tuning fork is a metal object consisting of two tines capable of vibrating if struck by a rubber hammer or mallet. As the tines of the tuning forks vibrate back and forth, they begin to disturb surrounding air molecules. These disturbances are passed on to adjacent air molecules by the mechanism of particle interaction. The motion of the disturbance, originating at the tines of the tuning fork and traveling through the medium (in this case, air) is what is referred to as a sound wave. The generation and propagation of a sound wave is demonstrated in the animation below.

In some class demonstrations, the tuning fork is mounted on a sound board. In such instances, the vibrating tuning fork, being connected to the sound board, sets the sound board into vibrational motion. In turn, the sound board, being connected to the air inside of it, sets the air inside of the sound board into vibrational motion. As the tines of the tuning fork, the structure of the sound board, and the inside of the sound board begin vibrating at the same frequency, a louder sound is produced. In fact, the more particles which can be made to vibrate, the louder or more amplified the sound. This concept was also demonstrated by the placement of the vibrating tuning fork against the glass panel of the overhead projector; the vibrating tuning fork set the glass panel into vibrational motion and resulted in an amplified sound.

In the tuning fork demonstrations, we know that the tuning fork is vibrating because we hear the sound which is produced by their vibration. Nonetheless, we do not actually visibly detect any vibrations of the tines. This is because the tines are vibrating at a very high frequency. If the tuning fork which is being used corresponds to middle C on the piano keyboard, then the tines are vibrating at a frequency of 256 Hz - 256 vibrations per second. We are unable to detect vibrations of such high frequency. But perhaps you recall the demonstration in which a high frequency strobe light was used to slow down the vibrations. If he strobe light puts out a flash of light at a frequency of 512 Hz (two times the frequency of the tuning fork), then the tuning fork can be observed to be moving in a back and forth motion. With the room darkened, the strobe allows us to view the position of the tines two times during their vibrational cycle. Thus we see the tines when they are displaced far to the left and again when they are displaced far to the right. This is convincing proof that the tines of the tuning fork are indeed vibrating to produce sound.

In a previous unit of The Physics Classroom, a distinction was made between two categories of waves: mechanical waves and electromagnetic waves. Electromagnetic waves are waves which have an electric and magnetic nature and are capable of traveling through a vacuum. Electromagnetic waves do not require a medium in order to transport their energy. Mechanical waves are waves which require a medium in order to transport their energy from one location to another. Because mechanical waves rely on particle interaction in order to transport their energy, they cannot travel through regions of space which are devoid of particles. That is, mechanical waves cannot travel through a vacuum. This feature of mechanical waves was demonstrated in class using a segment from a laser disc. A ringing bell was placed in a jar and air was evacuated from the jar. Once air was removed from the jar, the sound of the ringing bell could no longer be heard. The clapper could be seen striking the bell. but the sound which it produced could not be heard because there were no particles inside of the jar to transport the disturbance through the vacuum. Sound is a mechanical wave and cannot travel through a vacuum.

synesthesia



Instructor:

John Bruneau

Audial:

Andy Lau
Jeff Wilcox
Crystal Ma
Corrie Tse

Tactile:
Kristin O'Friel
Mike Weisert
Ethan Miller

Visual:
Franklin Clark
Chris Head
Shawn Jackson
Aaron Siegel

Special thanks:
Bruce Gardner
Stepahan Hechenberger
Sarah Lowe


Synesthesia: My Synesthetic Alphabet

Synesthesia: My Synesthetic Alphabet

I associate colors with letters and numbers. I have done this as early as I can remember but I did not learn that it was a recognized neurological condition until recently. Below you can see the alphabet the way I view it along with various numbers and punctuation. If you are interested in learning more, visit some of the links at the bottom, or follow the synesthesia webring link to other sites.

Synesthesia is estimated to effect up to three percent of the population. People experince it in many different ways, including seeing sounds and smells. I have the most common form, color-letter synesthesia. It is not detrimental, and actually helps me remember things. When I used to work at the airport in catering I could remember what gates and planes that I have visited by the colors I assciated with them.

Synaesthetes tend to confuse left and right, which applies to me. Although I am excellent at navigating and remembering spatial directions, when giving directions to people I confuse left and right all the time.

A correlation between the artists and synaesthetes exists, perhaps indiacting that people with synesthesia are more creative. I am not sure if this applies to me.

Synesthetic Alphabet

t h e s y n e s t h e s i a w e b r i n g
back list join forward

Here are some Synesthetic links:

Synesthesia: Phenomenology And Neuropsychology
A review of current knowledge of synesthesia. - The author mentions that synesthetics are good at remembering the spatial locations of objects including memorizing floor plans and maps. This is a skill that I have. Also, he mentions that they often have right-left confusion (which I often do).

The UK Synaesthesia Association
This page provides a lot of great background info on Synesthesia.

Trends in colored letter synesthesia
The type of synesthesia that I have is colored letter synesthesia. This paper seeks to identify trends among several synthetics and their colored alphabets. My

synesthesia

Synesthesia

From Wikipedia, the free encyclopedia

Jump to: navigation, search

Synesthesia (also spelled synæsthesia or synaesthesia, plural synesthesiae or synaesthesiae)—from the Ancient Greek σύν (syn), meaning "with," and αἴσθησις (aisthēsis), meaning "sensation"'—is a neurological condition in which two or more bodily senses are coupled. In one common form of synesthesia, known as grapheme → color synesthesia, letters or numbers are perceived as inherently colored, while in ordinal linguistic personification, numbers, days of the week and months of the year evoke personalities. In spatial-sequence, or number form synesthesia, numbers, months of the year, and/or days of the week elicit precise locations in space (for example, 1980 may be "farther away" than 1990), or may have a three-dimensional view of a year as a map (clockwise or counterclockwise).

While cross-sensory metaphors (e.g., "loud shirt", "bitter wind" or "prickly laugh") are sometimes described as "synesthetic", true neurological synesthesia is involuntary. It is estimated that synesthesia may be as prevalant as 1 in 23 persons across its range of variants (Simner et al. 2006). It runs strongly in families, possibly inherited as an X-linked dominant trait. Synesthesia is also sometimes reported by individuals under the influence of psychedelic drugs, after a stroke, or as a consequence of blindness or deafness. Synesthesia that arises from such non-genetic events is referred to as adventitious synesthesia to distinguish it from the more common congenital forms of synesthesia. Adventitious synesthesia involving drugs or stroke (but not blindness or deafness) apparently only involves sensory linkings such as sound → vision or touch → hearing; there are few if any reported cases involving culture-based, learned sets such as graphemes, lexemes, days of the week, or months of the year.

Although synesthesia was the topic of intensive scientific investigation in the late 1800s and early 1900s, it was largely abandoned in the mid-20th century, and has only recently been rediscovered by modern researchers. Psychological research has demonstrated that synesthetic experiences can have measurable behavioral consequences, while functional neuroimaging studies have identified differences in patterns of brain activation (for a review see Hubbard & Ramachandran 2005).

Many people with synesthesia use their experiences to aid in their creative process, and many non-synesthetes have attempted to create works of art that may capture what it is like to experience synesthesia. Psychologists and neuroscientists study synesthesia not only for its inherent interest, but also for the insights it may give into cognitive and perceptual processes that occur in everyone, synesthete and non-synesthete alike.

Definitional criteria

Although referred to as a "neurological condition", synesthesia is not listed in either the DSM-IV or the ICD classifications, since synesthesia does not, in general, interfere with normal daily functioning. Indeed most synesthetes report that their experiences are neutral, or even pleasant (Day 2005). Rather, like color blindness or perfect pitch, synesthesia is a difference in perceptual experience and is referred to as a neurological condition to reflect the brain basis of this perceptual difference. To date, no research has demonstrated a consistent association between synesthetic experience and other neurological or psychiatric conditions, although this is an active area of research (see below for associated cognitive traits).

It was once assumed that synaesthetic experiences were entirely different from synaesthete to synaesthete, but recent research has shown that there are underlying similarities that can be observed when large numbers of synaesthetes are examined together. For example, sound-colour synaesthetes, as a group, tend to see lighter colours for higher sounds (Ward et al, 2006) and grapheme-colour synaesthetes, as a group, share significant preferences for the colour of each letter (e.g., A tends to be red; O tends to be white or black; S tends to be yellow etc., Simner et al., 2005; Rich et al., 2005; Day, 2005). Nonetheless, there are a great number of types of synesthesia, and within each type, individuals can report differing triggers for their sensations, and differing intensities of experiences. This variety means that defining synesthesia in an individual is difficult, and indeed, the majority of synesthetes are not aware that their experiences have a name. However, despite the differences between individuals, there are a few common elements that define a true synesthetic experience.

Neurologist Richard Cytowic identifies the following diagnostic criteria of synesthesia ( Cytowic 2002, pp. 67-69; Cytowic 2003, pp. 76-77):

  1. Synesthesia is involuntary and automatic.
  2. Synesthetic images are spatially extended, meaning they often have a definite 'location'.
  3. Synesthetic percepts are consistent and generic (i.e. simple rather than imagistic).
  4. Synesthesia is highly memorable.
  5. Synesthesia is laden with affect.
  6. Synesthesia is not easily forgotten.

[edit] Experiences

Synesthetes often report that they were unaware their experiences were unusual until they realized other people did not have them, while others report feeling as if they had been keeping a secret their entire lives. The automatic and ineffable nature of a synesthetic experience means that the pairing may not seem out of the ordinary. This involuntary and consistent nature helps define synesthesia as a real experience. Most synesthetes report that their experiences are pleasant or neutral although, in rare cases synesthetes report that their experiences can lead to a degree of sensory overload (Day 2005).

"One day," I said to my father, "I realized that to make an 'R' all I had to do was first write a 'P' and then draw a line down from its loop. And I was so surprised that I could turn a yellow letter into an orange letter just by adding a line."

Writer Patricia Lynne Duffy, recalling an early experience."[1]

Despite the commonalities which permit definition of the broad phenomenon of synesthesia, individual experiences vary in numerous ways. This variability was first noticed early on in synesthesia research (Flournoy 1893) but has only recently come to be re-appreciated by modern researchers. Some grapheme → color synesthetes report that the colors seem to be "projected" out into the world, while most report that the colors are experienced in their "mind's eye" (Dixon, Smilek & Merikle 2004). Additionally, some grapheme → color synesthetes report that they experience their colors strongly, and show perceptual enhancement on the perceptual tasks described below, while others (perhaps the majority) do not (Hubbard et al. 2005a), perhaps due to differences in the stage at which colors are evoked. Some synesthetes report that vowels are more strongly colored, while for others consonants are more strongly colored (Day 2005). The descriptions below give some examples of synesthetes' experiences, but do not exhaust their rich variety.

[edit] Various forms

Synesthesia can occur between nearly any two senses or perceptual modes. Given the large number of forms of synesthesia, researchers have adopted a convention of indicating the type of synesthesia by using the following notation x → y, where x is the "inducer" or trigger experience, and y is the "concurrent" or additional experience. For example, perceiving letters and numbers (collectively called graphemes) as colored would be indicated as grapheme → color synesthesia. Similarly, when synesthetes see colors and movement as a result of hearing musical tones, it would be indicated as tone → (color, movement) synesthesia.

While nearly every possible combination of experiences is logically possible, several types are more common than others.

[edit] Grapheme → color synesthesia

How someone with synesthesia might perceive certain letters and numbers.
How someone with synesthesia might perceive certain letters and numbers.

In one of the most common forms of synesthesia, grapheme → color synesthesia, individual letters of the alphabet and numbers (collectively referred to as graphemes), are "shaded" or "tinged" with a color. While synesthetes do not, in general, report the same colors for all letters and numbers, studies of large numbers of synesthetes find that there are some commonalities across letters (e.g., A is likely to be red) ( Day 2005; Simner et al. 2005).

A grapheme → color synesthete reports, "I often associate letters and numbers with colors. Every digit and every letter has a color associated with it in my head. Sometimes, when letters are written boldly on a piece of paper, they will briefly appear to be that color if I'm not focusing on it. Some examples: 'S' is red, 'H' is orange, 'C' is yellow, 'J' is yellow-green, 'G' is green, 'E' is blue, 'X' is purple, 'I' is pale yellow, '2' is tan, '1' is white. If I write SHCJGEX it registers as a rainbow when I read over it, as does ABCPDEF."[2]

Another reports a similar experience. "When people ask me about the sensation, they might ask, 'so when you look at a page of text, it's a rainbow of color?' It isn't exactly like that for me. When I read words, about five words around the exact one I'm reading are in color. It's also the only way I can spell. I remember in elementary school remembering how to spell the word 'priority' because the color scheme, in general, was darker than many other words. I would know that an 'e' was out of place in that word because e's were yellow and didn't fit."

[edit] Music → color synesthesia

In music → color synesthesia, individuals experience colors in response to tones or other aspects of musical stimuli (e.g., timbre or key). Like grapheme → color synesthesia, there is rarely agreement amongst synesthetes that a given tone will be a certain color. However, consistent trends can be found, such that higher pitched notes are experienced as being more brightly colored (Ward, Huckstep & Tsakanikos 2006). The presence of similar patterns of pitch-brightness matching in non-synesthetic subjects suggests that this form of synesthesia shares mechanisms with non-synesthetes (Ward, Huckstep & Tsakanikos 2006).

Color changes in response to pitch may involve more than just the hue of the color. Brightness (the amount of white in a color; as brightness is removed from red, for example, it fades into a brown and finally to black), saturation (the intensity of the color; firetruck red and sky blue are highly saturated, while grays, white, and black are unsaturated), and hue may all be affected to varying degrees (Campen & Froger 2003). Additionally, music → color synesthetes, unlike grapheme → color synesthetes, often report that the colors move, or stream into and out of their field of view.

[edit] Number form synesthesia

Main article: Number form
A number form from one of Francis Galton's (1881b) subjects. Note the convolutions, and how the first 12 digits correspond to a clock face.
A number form from one of Francis Galton's (1881b) subjects. Note the convolutions, and how the first 12 digits correspond to a clock face.

A number form is a mental map of numbers, which automatically and involuntarily appears whenever someone who experiences number-forms thinks of numbers. Number forms were first documented and named by Francis Galton in The Visions of Sane Persons (Galton 1881a). Later research has identified them as a type of synesthesia ( Seron, Pesenti & Noël 1992; Sagiv et al. 2006b). In particular, it has been suggested that number-forms are a result of "cross-activation" between regions of the parietal lobe that are involved in numerical cognition and spatial cognition ( Ramachandran & Hubbard 2001; Hubbard et al. 2005b). In addition to its interest as a form of synesthesia, researchers in numerical cognition have begun to explore this form of synesthesia for the insights that it may provide into the neural mechanisms of numerical-spatial associations present unconsciously in everyone.

[edit] Personification

Ordinal-linguistic personification (OLP, or personification for short) is a form of synesthesia in which ordered sequences, such as ordinal numbers, days, months and letters are associated with personalities ( Simner & Holenstein 2007; Simner & Hubbard 2006). Although this form of synesthesia was documented as early as the 1890s ( Flournoy 1893; Calkins 1893) modern research has, until recently, paid little attention to this form.

"T’s are generally crabbed, ungenerous creatures. U is a soulless sort of thing. 4 is honest, but… 3 I cannot trust… 9 is dark, a gentleman, tall and graceful, but politic under his suavity"

Synesthetic subject report in Calkins 1893, p. 454

"I [is] a bit of a worrier at times, although easy-going; J [is] male; appearing jocular, but with strength of character; K [is] female; quiet, responsible..."

Synesthetic subject MT report in Cytowic 2002, p. 298

For some people in addition to numbers and other ordinal sequences, objects are sometimes imbued with a sense of personality, sometimes referred to as a type of animism. This type of synesthesia is harder to distinguish from non-synesthetic associations. However, recent research has begun to show that this form of synesthesia co-varies with other forms of synesthesia, and is consistent and automatic, as required to be counted as a form of synesthesia (Simner & Holenstein 2007).

[edit] Lexical → gustatory synesthesia

In a rare form of synesthesia, lexical → gustatory synesthesia, individual words and phonemes of spoken language evoke the sensations of taste in the mouth.

Whenever I hear, read, or articulate (inner speech) words or word sounds, I experience an immediate and involuntary taste sensation on my tongue. These very specific taste associations never change and have remained the same for as long as I can remember.

James Wannerton[3]

Jamie Ward and Julia Simner have extensively studied this form of synesthesia, and have found that the synesthetic associations are constrained by early food experiences ( Ward & Simner 2003; Ward, Simner & Auyeung 2005). For example, James Wannerton has no synesthetic experiences of coffee or curry, even though he eats them regularly as an adult. Conversely, he tastes certain breakfast cereals and candies that are no longer sold.

Additionally, these early food experiences are often paired with tastes based on the phonemes in the name of the word (e.g., /I/, /n/ and /s/ trigger James Wannerton’s taste of mince) although others have less obvious roots (e.g., /f/ triggers sherbet). To show that phonemes, rather than graphemes are the critical triggers of tastes, Ward and Simner showed that, for James Wannerton, the taste of egg is associated to the phoneme /k/, whether spelled with a c (e.g., accept), k (e.g., York), ck (e.g., chuck) or x (e.g., fax). Another source of tastes comes from semantic influences, so that food names tend to taste of the food they match, and the word blue tastes "inky".

[edit] Research history

Although there were previous mentions of synesthesia, the phenomenon was first brought to the attention of the scientific community in the 1880s by Francis Galton ( Galton 1880a; Galton 1880b; Galton 1883). Following these initial observations, research into synesthesia proceeded briskly, with researchers from England, Germany, France and the United States all investigating the phenomenon. However, due to the difficulties in assessing and measuring subjective internal experiences, and the rise of behaviorism in psychology, which banished any mention of internal experiences, the study of synesthesia gradually waned during the 1930s.

In the 1980s, as the cognitive revolution had begun to make discussion of internal states and even the study of consciousness respectable again, scientists began to once again examine this fascinating phenomenon. Led in the United States by Larry Marks and Richard Cytowic, and in England by Simon Baron-Cohen and Jeffrey Gray, research into synesthesia began by exploring the reality, consistency and frequency of synesthetic experiences. In the late 1990s, researchers began to focus on grapheme → color synesthesia, one of the most common ( Day 2005; Rich, Bradshaw & Mattingley 2005) and easily studied forms of synesthesia. In 2006, the journal Cortex published a special issue on synesthesia, composed of 26 articles. Synesthesia has been the topic of numerous scientific books, as well as novels and short films that include characters who experience some form of synesthesia.

During the 1990s, with the rise of the internet, synesthetes started to contact each other, and create many web pages relating to the condition (see External links below). These early internet and e-mail contacts have now grown into several international organizations for synesthetes, including the American Synesthesia Association, the UK Synaesthesia Association, the Belgian Synaesthesia Association, and the now defunct International Synaesthesia Association.

[edit] Prevalence and genetic basis

Estimates of the prevalence of synesthesia have varied widely (from 1 in 20 to 1 in 20,000). However, these studies all suffered from the methodological shortcoming of relying on self-selected samples. That is, the only people included in the studies were those who reported their experiences to the experimenter. Simner et al., (2006) conducted the first random population study, arriving at a prevalence of 1 in 23. Recent data suggests that grapheme → color, and days of the week → color variants are most common ( Day 2005; Simner et al. 2006).

Almost every study that has investigated the topic has suggested that synesthesia clusters within families, consistent with a genetic origin for the condition. The earliest references to the familial component of synesthesia date to the 1880s, when Francis Galton first described the condition in Nature. Since then, other studies have supported this conclusion. However, early studies ( Baron-Cohen et al. 1993; Baron-Cohen et al. 1996) which claimed a much higher prevalence in women than in men (up to 6:1) most likely suffered from a sampling bias due to the fact that women are more likely to self-disclose than men. More recent studies, using random samples find a sex ratio of 1.1:1 (Simner et al. 2006).

The observed patterns of inheritance have suggested an X-linked mode of inheritance, although research into the genetics of synesthesia is still preliminary. There are no documented instances of father-to-son transmission, while other forms of transmission (father-to-daughter, mother-to-son and mother-to-daughter) are quite common ( Baron-Cohen et al. 1996; Cytowic 2002; Ward & Simner 2005). Pairs of identical twins have been identified where only one member of the pair experiences synesthesia ( Smilek et al. 2002b; Smilek, Dixon & Merikle 2005) and it has been noted that synesthesia can skip generations within a family (Hubbard & Ramachandran 2003), consistent with models of incomplete penetrance. Additionally, Ward and Simner (2005) note that it is quite common for synesthetes within a family to experience different types of synesthesia, suggesting that the gene or genes involved in synesthesia do not lead to specific types of synesthesia. Rather developmental factors such as gene expression and environment must also play a role in determining which types of synesthesia an individual synesthete will experience.

[edit] Objective verification

Proof that someone is a synesthete is easy to come by, and hard to "fake." The simplest test involves test-retest reliability over long periods of time. Synesthetes consistently score higher on such tests than non-synesthetes (either with color names, color chips or even a color picker providing 16.7 million color choices). Synesthetes may score as high as 90% consistent over test-retest intervals of up to one year, while non-synesthetes will score 30-40% consistent over test-retest intervals of only one month, even if warned that they are going to be retested (e.g., Baron-Cohen et al. 1996).

More specialized tests include using modified versions of the Stroop effect. In the standard Stroop paradigm, it is harder to name the ink color of the word "red" when it is printed in blue ink than if it is presented in red ink. This demonstrates that reading is "automatic." Similarly, if a grapheme → color synesthete is presented with the digit 4 that he or she experiences as red, but presented in blue ink, he or she is slower to identify the ink color. Not because the synesthete cannot see the blue ink, but rather that the same sort of "response conflict" that is responsible for the standard Stroop effect is also occurring between the color of the ink and the automatically induced color of the grapheme. Similar variants of the Stroop effect can be devised where, for example, a music → color synesthete is asked to name a red color patch while listening to a tone that produces a blue sensation (Ward, Tsakanikos & Bray 2006), or where a musical key → taste synesthete is asked to identify a bitter taste while hearing a musical interval that induces a sweet taste (Beeli, Esslen & Jäncke 2005).

An example of a test used to demonstrate the reality of synesthetic experiences (from  Ramachandran & Hubbard 2001).
An example of a test used to demonstrate the reality of synesthetic experiences (from Ramachandran & Hubbard 2001).

Finally, studies of grapheme → color synesthesia have demonstrated that synesthetic colors can improve performance on certain visual tasks, at least for some synesthetes. Inspired by tests for color blindness, Ramachandran and Hubbard (2001) presented synesthetes and non-synesthetes with displays composed of a number of 5s, with some 2s embedded among the 5s. These 2s could make up one of four shapes; square, diamond, rectangle or triangle. For a synesthete who sees 2s as red and 5s as green, their synesthetic colors help them to find the "embedded figure". Subsequent studies have explored these effects more carefully, and have found that 1) there is substantial variability among synesthetes ( Dixon, Smilek & Merikle 2004; Hubbard et al. 2005a) and 2) while synesthesia is evoked early in perceptual processing, it does not occur prior to attention (e.g., Edquist et al. 2006; Sagiv, Heer & Robertson 2006a).

[edit] Possible neural basis

Regions thought to be cross-activated in grapheme-color synesthesia (from  Ramachandran & Hubbard 2001).
Regions thought to be cross-activated in grapheme-color synesthesia (from Ramachandran & Hubbard 2001).

Theories of the neural basis of synesthesia start from the observation that there are dedicated regions of the brain that are specialized for certain functions. Based on this notion of specialized regions, some researchers have suggested that increased cross-talk between different regions specialized for different functions may account for different types of synesthesia. For example, since regions involved in the identification of letters and numbers lie adjacent to a region involved in color processing (V4), the additional experience of seeing colors when looking at graphemes might be due to "cross-activation" of V4 (Ramachandran & Hubbard 2001). This cross-activation may arise due to a failure of the normal developmental process of pruning.

Alternatively, synesthesia may arise though "disinhibited feedback" or a reduction in the amount of inhibition along feedback pathways (Grossenbacher & Lovelace 2001). Normally, the balance of excitation and inhibition are maintained. However, if normal feedback were not adequately inhibited, then signals coming from later multi-sensory stages of processing might influence earlier stages of processing, such that tones would activate visual cortical areas in synesthetes more than in non-synesthetes. In this case, it might explain why some users of psychedelic drugs such as LSD or mescaline report synesthetic experiences while under the influence of the drug.

Functional neuroimaging studies using positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) have demonstrated significant differences between the brains of synesthetes and non-synesthetes. Recent studies using fMRI have demonstrated that V4 is more active in both word → color and grapheme → color synesthetes ( Nunn et al. 2002; Hubbard et al. 2005a; Sperling et al. 2006). However, these neuroimaging studies do not have the spatial and temporal resolution necessary to distinguish between the pruning and disinhibited feedback theories.

[edit] Associated cognitive traits

Very little is known about the overall cognitive traits associated with synesthesia (or, indeed if there are any cognitive traits that are consistently associated with synesthesia). Some studies have suggested that synesthetes are unusually sensitive to external stimuli (see, e.g., Cytowic 2002). Other possible associated cognitive traits include left-right confusion, difficulties with math, and difficulties with writing (Cytowic 2002).

However, synesthetes may be more likely to participate in creative activities (Rich, Bradshaw & Mattingley 2005), and some studies have suggested a correlation between synesthesia and creativity ( Domino 1989; Dailey, Martindale & Borkum 1997). Other research has suggested that synesthesia may contribute to superior memory abilities ( Luria 1968; Smilek et al. 2002a). However, it is unclear whether this is a general feature of synesthesia or whether it is true of only a small minority. This is a major topic of current and future research.

[edit] Links with other areas of study

Researchers study synesthesia not only because it is inherently interesting, but also because they hope that studying synesthesia will offer new insights into other questions, such as how the brain combines information from different sensory modalities, referred to as crossmodal perception and multisensory integration.

This picture is used as a test to demonstrate that people may not attach sounds to shapes arbitrarily. Subjects are asked which shape might be called "Kiki" and which might be called "Bouba".
This picture is used as a test to demonstrate that people may not attach sounds to shapes arbitrarily. Subjects are asked which shape might be called "Kiki" and which might be called "Bouba".

One example of this is the bouba/kiki effect. In a psychological experiment first designed by Wolfgang Köhler, people are asked to choose which of two shapes (pictured right) is named bouba and which is named kiki. 95% to 98% of people choose kiki for the orange angular shape and bouba for the purple rounded shape. With individuals on the island of Tenerife, Kohler showed a similar preference between shapes called "takete" and "maluma". Recent work by Daphne Maurer and colleagues has shown that even children as young as 2.5 (too young to read) show this effect (Maurer, Pathman & Mondloch 2006).

Ramachandran and Hubbard (2001) suggest that the kiki/bouba effect has implications for the evolution of language, because it suggests that the naming of objects is not completely arbitrary. The rounded shape may most commonly be named bouba because the mouth makes a more rounded shape to produce that sound while a more taut, angular mouth shape is needed to make the sound kiki. The sounds of a K are harder and more forceful than those of a B, as well. The presence of these "synesthesia-like mappings" suggest that this effect might be the neurological basis for sound symbolism, in which sounds are non-arbitrarily mapped to objects and events in the world.

Similarly, synesthesia researchers hope that, because of their unusual conscious experiences, the study of synesthesia will provide a window into better understanding consciousness and in particular on the neural correlates of consciousness, or what the brain mechanisms that allow us to be conscious might be. In particular, some researchers have argued that synesthesia is relevant to the philosophical problem of qualia (see, e.g., Gray et al. 2002; Gray et al. 1997; Ramachandran & Hubbard 2001), since synesthetes experience additional qualia evoked through non-typical routes.

[edit] Use in art

Vision by Carol Steen; Oil on Paper; 15 x 12-3/4 inches; 1996. A representation of a synesthetic vision the artist experienced during acupuncture treatment.
Vision by Carol Steen; Oil on Paper; 15 x 12-3/4 inches; 1996. A representation of a synesthetic vision the artist experienced during acupuncture treatment.
Main article: Synesthesia in art

The phrase synesthesia in art has historically referred to a wide variety of artistic experiments in order to synthesize different art disciplines (i.e. music and painting) as can be observed in the genres of visual music, abstract film, computer animation, symbolist poetry, multimedia and intermedial art (Berman 1999, Maur 1999, Gage 1994, 1999, Campen 1999). The usage of the term in the arts should, however, be differentiated from "genuine" synesthesia in scientific research. Scientific methods to assess synesthesia have only been developed in the last two decades. To assess synesthesia in artists before that time one has to interpret autobiographical and biographical sources (see also the List of people with synesthesia). In general, it has shown to be extremely difficult to categorize artists as synesthetes without scientific criteria or assessment.

Synesthetic art may refer to either art created by synesthetes or art created to convey the synesthetic experience. It is an attempt to understand the relation between the experiences of congenital synesthetes, the experiences of non-synesthetes, and an appreciation of such art by both synesthetes and non-synesthetes. These distinctions are not mutually exclusive, as, for example, art by a synesthete might also evoke synesthesia-like experiences in the viewer. However, it should not be assumed that all "synesthetic" art accurately reflects the synesthetic experience. This latter category is also sometimes referred to as artificial synesthesia.

Historically, synesthetic art consisted of a number of contrivances, such as color organs, musical painting and more recently, visual music, all of which have been intended to evoke cross-sensory fusions in the audience, although the inventors of such artifices were not necessarily synesthetes themselves, and may not even have been aware of synesthesia as such. Numerous modern synesthete artists, including Carol Steen, Marcia Smilack, and others have described in detail the manner in which they use their synesthesia in the creation of their artworks, demonstrating the complex interplay between their personal experiences and their artistic creations.

[edit] Literary depictions

In addition to its role in art, synesthesia has often been used as a plot device or as a way of developing a particular character's internal states. In order to better understand the influence of synesthesia in popular culture, and how the condition is viewed by non-synesthetes, it is informative to examine books in which one of the main characters is portrayed as experiencing synesthesia. In addition to these fictional portrayals, the way in which synesthesia is presented in non-fiction books to non-specialist audiences is instructive. Author and synesthete, Patricia Lynne Duffy has described four ways in which synesthete characters have been used in modern fiction.

  1. Synesthesia as Romantic ideal: in which the synesthetic experience illustrates the Romantic ideal of transcending our experience of the world. Books in this category include The Gift by Vladimir Nabokov.
  2. Synesthesia as pathology: in which synesthesia is portrayed as pathological. Books in this category include The Whole World Over by Julia Glass.
  3. Synesthesia as Romantic pathology: in which synesthesia is portrayed as pathological, but also as providing an avenue into the Romantic ideal of transcending normal experience. Duffy selects Holly Payne’s novel, The Sound of Blue as an example of this category.
  4. Synesthesia as health and balance for some individuals: in which synesthesia is portrayed as indicating psychological health and well being. In particular, Duffy selects two novels, Painting Ruby Tuesday by Jane Yardley and A Mango-Shaped Space by Wendy Mass to illustrate this usage of synesthesia as a plot or character device.

Note that not all of the depictions of synesthesia in the fictional works are accurate. Some are highly inaccurate and reflect more about the author's interpretation of synesthesia than about the phenomenon itself.

[edit] People with synesthesia

There is a great deal of debate about whether or not synesthesia can be identified through historical sources. A small number of famous people have been labeled as synesthetes on the basis of at least two historical sources. This includes individuals of many different talents, such as artists, novelists, composers, musicians, and scientists.

Artists with synesthesia include the painter David Hockney, who perceives music synesthetically as colors, and who used these synesthetic colors when painting stage sets, but not in creating his other artworks. Also, Russian painter Wassily Kandinsky had the same type of synaesthesia (sound and colour). Perhaps the most famous synesthete author was Vladimir Nabokov, who had grapheme → color synesthesia, one of the most common types, which he described at length in his autobiography, Speak Memory, and which he sometimes portrays in giving his characters synesthesia. Composers include Duke Ellington (timbre → color), Franz Liszt (music → color), Nikolai Rimsky-Korsakov, and Olivier Messiaen, who had a complex form of synesthesia in which chord structures produced synesthetic colors. Notable synesthete scientists include Nikola Tesla and Richard Feynman. Feynman describes in his autobiography, What Do You Care What Other People Think?, that he had the grapheme → color type. Currently, one of the most popular synesthetes is perhaps hip-hop producer and musician Pharrell Williams (music → color) and musician John Mayer. Other notable synesthetes include Justin Chancellor (music → color), bassist for the prog-metal band Tool, and electronic musician Aphex Twin, who borrows inspiration from lucid dreams as well as synesthesia (music → color). The classical pianist Hélène Grimaud has the condition also.

Some of the most frequently mentioned artists in connection with synesthesia probably were not synesthetes. Despite compositions such as Prometheus: The Poem of Fire and Mysterium, the Russian composer Alexander Scriabin was most likely not a synesthete. He was particularly interested in the psychological effects on the audience when they experienced sound and color simultaneously. His theory was that when the correct color was perceived with the correct sound, ‘a powerful psychological resonator for the listener’ would be created. On the score of Prometheus Scriabin wrote next to the instruments separate parts for the color organ (Galeyev 2001, Gleich 1963).

The French Romantic poets Arthur Rimbaud and Charles Baudelaire wrote poems which focused on synesthetic experience, but were evidently not synesthetes themselves. Baudelaire's Correspondances (1857) (full text available here) introduced the Romantic notion that the senses can and should intermingle. Kevin Dann (Dann 1998) argues that Baudelaire probably learned of synesthesia from reading medical textbooks that were available in his home. Rimbaud, following Baudelaire, wrote Voyelles (1871) (full text available here) which was perhaps more important than Correspondances in popularizing synesthesia, although he later admitted ""J'inventais la couleur des voyelles!" [I invented the colors of the vowels!].

Sean A. Day, a synesthete, and the President of the American Synesthesia Association, maintains a list of people with synesthesia, "pseudosynesthetes," and individuals who are most likely not synesthetic, but who used synesthesia in their art or music.

[edit] Further reading

[edit] See also

[edit] Notes